Abstract
Targeting the current Covid 19 pandemic situation, this paper identifies the need of crowd management. Thus, it proposes an effective and efficient real-time human detection and counting solution specifically for shopping malls by producing a system with graphical user interface and management functionalities. Besides, it comprehensively reviews and compares the existing techniques and similar systems to select the ideal solution for this scenario. Specifically, advanced deep learning computer vision techniques are decided by using YOLOv3 for detecting and classifying the human objects with DeepSORT tracking algorithm to track each detected human object and perform counting using intrusion line judgment. Additionally, it converts the pretrained YOLOv3 into TensorFlow format for better and faster real-time computation using graphical processing unit instead of using central processing unit as the traditional target machine. The experimental results have proven this implementation combination to be 91.07% accurate and real-time capable with testing videos from the internet to simulate the shopping mall entrance scenario.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.