Abstract

We described a real-time hair segmentation method based on a fully convolutional network with the basic structure of an encoder–decoder. In one of the traditional computer vision techniques for hair segmentation, the mean shift and watershed methodologies suffer from inaccuracy and slow execution due to multi-step, complex image processing. It is also difficult to execute the process in real-time unless an optimization technique is applied to the partition. To solve this problem, we exploited Mobile-Unet using the U-Net segmentation model, which incorporates the optimization techniques of MobileNetV2. In experiments, hair segmentation accuracy was evaluated by different genders and races, and the average accuracy was 89.9%. By comparing the accuracy and execution speed of our model with those of other models in related studies, we confirmed that the proposed model achieved the same or better performance. As such, the results of hair segmentation can obtain hair information (style, color, length), which has a significant impact on human-robot interaction with people.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.