Abstract

High-quality reconstruction of 3D geometry and texture plays a vital role in providing immersive perception of the real world. Additionally, online computation enables the practical usage of 3D reconstruction for interaction. We present an RGBD-based globally-consistent dense 3D reconstruction approach, where high-quality (i.e., the spatial resolution of the RGB image) texture patches are mapped on high-resolution ([Formula: see text]) geometric models online. The whole pipeline uses merely the CPU computing of a portable device. For real-time geometric reconstruction with online texturing, we propose to solve the texture optimization problem with a simplified incremental MRF solver in the context of geometric reconstruction pipeline using sparse voxel sampling strategy. An efficient reference-based color adjustment scheme is also proposed to achieve consistent texture patch colors under inconsistent luminance situations. Quantitative and qualitative experiments demonstrate that our online scheme achieves a realistic visualization of the environment with more abundant details, while taking fairly compact memory consumption and much lower computational complexity than existing solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call