Abstract

A real-time method for the detection of gait events that occur during the electrically stimulated locomotion of paraplegic subjects is described. It consists of a two-level algorithm for the processing of sensor signals and the determination of gait event times. Sensor signals and information about the progression of the stimulator though its pre-specified stimulation "pattern" are processed by a machine intelligence (fuzzy logic) algorithm to determine an initial estimate of the patient's current phase of gait. This is then reviewed and modified by a second algorithm that removes spurious gait estimates, and determines gait event times. These gait event times are known to the system within approximately one-half of a gait cycle. The resulting gait event detection system was successfully evaluated on three subjects. Detection accuracy is not adversely affected by day-to-day gait variability. This work resolved technical and practical issues that previously limited the real time application of these methods. In particular, cosmetically acceptable insole force transducers were used. This gait event detector is designed for use in a real time controller for the automatic adjustment of the intensity and timing of stimulation while the subject is walking using functional electrical stimulation (FES).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.