Abstract

Real-time FTIR spectroscopy and in situ dynamic rheology were used to characterize the UV curing kinetics of a thiol-ene system containing trimethylolpropane tris(2-mercaptoacetate) and trimethylolpropane diallyl ether. The combination of these two techniques offered a powerful approach for monitoring changes in the chemical and rheological properties of the system during UV curing. Comparable gel times were independently obtained from both FTIR spectroscopy and rheology, thereby validating the comparison of data obtained from each method. The thiol conversion determined from FTIR spectroscopy was correlated with the elastic modulus obtained from rheology. The conversion increased very rapidly during the initial stages of UV curing. However, the elastic modulus did not have an appreciable value until after 65% of the thiol functional groups have reacted, following which the elastic modulus increased at a rapid rate. From the Flory−Stockmayer theory of gelation, the critical thiol conversion at the gel poi...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.