Abstract

The excited state phosphorescence lifetime of alexandrite crystals is used to monitor temperature in the physiological range from 15-45/spl deg/C with precision and accuracy of 0.2/spl deg/C. A 500-/spl mu/m cubic alexandrite crystal bounded to the distal end of an optical fiber of similar core dimensions is excited with pulsed Ne-He laser light. This apparatus uses a sampler for data acquisition and frequency domain methods for data fitting. The instrument amplifies the AC components of the detector output and band limits the signal to 12.5 kHz. The fundamental frequency of the excitation is set to 195.13 Hz to obtain 64 harmonics. This band limited signal is sampled and averaged over few hundred cycles in the time domain. The frequency domain representation of the data is obtained by employing fast Fourier transform algorithms. The phase delay and the modulation ratio of each sampled harmonic are then computed. Five to 50 values of the phase and modulations are averaged before computing the sensor lifetime. The instrument is capable of measuring precise and accurate excited state lifetimes from subpicowatt luminescent signals in plastic optical fibers. A least squares fit yields the lifetimes of single exponentials. A component of zero lifetime is introduced to account for the backscatter excitation seen by the photodetector leaking through optical interference filters. The phosphorescence lifetimes measured reproducibly to about three parts in a thousand are used to monitor physiological temperature. Temperatures are computed employing empirical polynomials. The system drift is negligible over 15 h of continuous operation. The instrumentation and methods allow 1.3-s update times and 30-s full response times. >

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call