Abstract

AbstractIn this paper we analysed the ozone time series data collected by the local monitoring network in the Naples urban area (southern Italy) during the spring/summer period of 1996. Our aim was to identify a reliable and effective model that could be used for the real‐time forecasting of photosmog episodes. We studied the applicability of seasonal autoregressive integrated moving average models with some exogenous variables (ARIMAX) to our case study. The choice of exogenous variables—temperature, [NO2]/[NO] ratio and wind speed—was based on physical reasoning. The forecasting performance of all models was evaluated with data not used in model development, by means of an array of statistical indices: the comparison between observed and forecast means and standard deviations; intercept and slope of a least squares regression of forecast variable on observed variable; mean absolute and root mean square errors; and 95% confidence limits of forecast variable. The assessment of all models was also based on their tendency to forecast critical episodes. It was found that the model using information from the temperature data set to predict peak ozone levels gives satisfactory results, about 70% of critical episodes being correctly predicted by the 24 h ahead forecast function. Copyright © 2001 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.