Abstract

BackgroundC. psittaci has recently emerged as an equine abortigenic pathogen causing significant losses to the Australian Thoroughbred industry, while Equine herpesvirus-1 (EHV-1) is a well-recognized abortigenic agent. Diagnosis of these agents is based on molecular assays in diagnostic laboratories.In this study, we validated C. psittaci and newly developed EHV-1 Loop Mediated Isothermal Amplification (LAMP) assays performed in a real-time fluorometer (rtLAMP) against the reference diagnostic assays. We also evaluated isothermal amplification using commercially available colorimetric mix (cLAMP), and SYBR Green DNA binding dye (sgLAMP) for “naked eye” end-point detection when testing ‘real-world’ clinical samples. Finally, we applied the C. psittaci LAMP assays in two pilot Point-of-Care (POC) studies in an equine hospital.ResultsThe analytical sensitivity of C. psittaci and EHV-1 rt-, and colorimetric LAMPs was determined as one and 10 genome equivalents per reaction, respectively. Compared to reference diagnostic qPCR assays, the C. psittaci rtLAMP showed sensitivity of 100%, specificity of 97.5, and 98.86% agreement, while EHV-1 rtLAMP showed 86.96% sensitivity, 100% specificity, and 91.43% agreement.When testing rapidly processed clinical samples, all three C. psittaci rt-, c-, sg-LAMP assays were highly congruent with each other, with Kappa values of 0. 906 for sgLAMP and 0. 821 for cLAMP when compared to rtLAMP. EHV-1 testing also revealed high congruence between the assays, with Kappa values of 0.784 for cLAMP and 0.638 for sgLAMP when compared to rtLAMP. The congruence between LAMP assays and the C. psittaci or EHV-1 qPCR assays was high, with agreements ranging from 94.12 to 100% for C. psittaci, and 88.24 to 94.12% for EHV-1, respectively.At the POC, the C. psittaci rt- and c-LAMP assays using rapidly processed swabs were performed by technicians with no prior molecular experience, and the overall congruence between the POC C. psittaci LAMPs and the qPCR assays ranged between 90.91–100%.ConclusionsThis study describes reliable POC options for the detection of the equine pathogens: C. psittaci and EHV-1. Testing ‘real-world’ samples in equine clinical setting, represents a proof-of-concept that POC isothermal diagnostics can be applied to rapid disease screening in the equine industry.

Highlights

  • C. psittaci has recently emerged as an equine abortigenic pathogen causing significant losses to the Australian Thoroughbred industry, while Equine herpesvirus-1 (EHV-1) is a well-recognized abortigenic agent

  • This study describes reliable POC options for the detection of the equine pathogens: C. psittaci and EHV-1

  • Testing ‘real-world’ samples in equine clinical setting, represents a proof-of-concept that POC isothermal diagnostics can be applied to rapid disease screening in the equine industry

Read more

Summary

Introduction

C. psittaci has recently emerged as an equine abortigenic pathogen causing significant losses to the Australian Thoroughbred industry, while Equine herpesvirus-1 (EHV-1) is a well-recognized abortigenic agent. Diagnosis of these agents is based on molecular assays in diagnostic laboratories. C. psittaci (C. psittaci) has recently emerged as an equine abortigenic pathogen causing significant losses to the Australian Thoroughbred industry [3,4,5]. This zoonotic pathogen has attracted attention due to the apparent transmission of C. psittaci from equine placental membranes to humans causing severe respiratory illness [6, 7]. EHV-1 is endemic to Australia and is one of the most economically important and prevalent pathogens of horses, posing a major global threat to the equine (Thoroughbred) industry worldwide [8,9,10]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.