Abstract

Mitochondrial membrane permeabilization (MMP) is a key event in necrotic and (intrinsic) apoptotic processes. MMP is controlled by a few major rate-limiting events, one of which is opening of the permeability transition pore (PTP). Here we develop a flow cytometry (FC)-based approach to screen and study inducers and blockers of MMP in isolated mitochondria. Fixed-time and real-time FC permits to co-evaluate and order modifications of mitochondrial size, structure and inner membrane (IM) electrochemical potential (ΔΨ m) during MMP. Calcium, a major PTP opener, and alamethicin, a PTP-independent MMP inducer, trigger significant mitochondrial forward scatter (FSC) increase and side scatter (SSC) decrease, correlating with spectrophotometrically detected swelling. FC-based fluorescence detection of the ΔΨ m-sensitive cationic lipophilic dye JC-1 permits to detect ΔΨ m variations induced by PTP openers or specific inducers of inner MMP such as carbonylcyanide m-chlorophenylhydrazone (mClCCP). These simple, highly sensitive and quantitative FC-based methods will be pertinent to evaluate compounds for their ability to control MMP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.