Abstract

An accurate and real-time flood forecast is a crucial nonstructural step to flood mitigation. A support vector machine (SVM) is based on the principle of structural risk minimization and has a good generalization capability. The ensemble Kalman filter (EnKF) is a proven method with the capability of handling nonlinearity in a computationally efficient manner. In this paper, a type of SVM model is established to simulate the rainfall–runoff (RR) process. Then, a coupling model of SVM and EnKF (SVM + EnKF) is used for RR simulation. The impact of the assimilation time scale on the SVM + EnKF model is also studied. A total of four different combinations of the SVM and EnKF models are studied in the paper. The Xinanjiang RR model is employed to evaluate the SVM and the SVM + EnKF models. The study area is located in the Luo River Basin, Guangdong Province, China, during a nine-year period from 1994 to 2002. Compared to SVM, the SVM + EnKF model substantially improves the accuracy of flood prediction, and the Xinanjiang RR model also performs better than the SVM model. The simulated result for the assimilation time scale of 5 days is better than the results for the other cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.