Abstract

Simple SummaryCrapemyrtle bark scale (CMBS; Acanthococcus lagerstroemiae), an invasive polyphagous sap feeder in the United States, has spread across 16 U.S. states in less than two decades, posing potential risks to the Green Industry. Confirming the host range is crucial for effective pest management of invasive insects. However, host range confirmation relying on greenhouse or field trials is often inefficient and time-consuming. In this study, we used the electrical penetration graph (EPG) to monitor the stylet penetration of CMBS in plant tissue in real-time. An R programming-based application was developed to better characterize the insect EPG waveforms recorded by EPG. By analyzing EPG-based EPG parameters, we demonstrated that CMBS has difficulty accessing the phloem tissue (salivation and ingestion) of a resistant plant compared to a susceptible plant. Importantly, we hereby present CMBS typical feeding behaviors on susceptible and non-susceptible plants comparatively, which provides direct evidence for revealing unknown hosts rapidly.Host range confirmation of invasive hemipterans relies on the evaluation of plant susceptibility though greenhouse or field trials, which are inefficient and time-consuming. When the green industry faces the fast-spreading threat of invasive pests such as crapemyrtle bark scale (Acanthococcus lagerstroemiae), it is imperative to timely identify potential host plants and evaluate plant resistance/susceptibility to pest infestation. In this study, we developed an alternative technology to complement the conventional host confirmation methods. We used electrical penetration graph (EPG) based technology to monitor the A. lagerstroemiae stylet-tip position when it was probing in different plant tissues in real-time. The frequency and relative amplitude of insect EPG waveforms were extracted by an R programming-based software written to generate eleven EPG parameters for comparative analysis between plant species. The results demonstrated that the occurrences of phloem phase and xylem phase offered conclusive evidence for host plant evaluation. Furthermore, parameters including the percentage of insects capable of accessing phloem tissue, time duration spent on initiating phloem phase and ingesting phloem sap, provided insight into why host plant susceptibility differs among similar plant species. In summary, this study developed a novel real-time diagnostic tool for quick A. lagerstroemiae host confirmation, which laid the essential foundation for effective pest management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call