Abstract

Smart meters can help citizens in optimizing energy consumption patterns. However, mixed evidence exists on their effectiveness in reducing energy demand and especially in levelling off the daily peaks of electricity load curves. Here, we evaluate the impact of providing real-time feedback on electricity consumption from a field trial in Italy. We combine standard regressions with machine learning techniques on high-frequency data to quantify impacts on both levels and patterns of electricity use. Results indicate that real-time feedback can moderately decrease electricity consumption (between 0.5 and 1.9% depending on model specification), but that it does not promote load shifting throughout the day by itself. Machine learning reveals evidence of significant household heterogeneity in the behavioral response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.