Abstract

We demonstrate a microfluidic system which applies engineering feedback principles to control the pH of a solution with a high degree of precision. The system utilizes an extended-gate ion-sensitive field-effect transistor (ISFET) along with an integrated pseudo-reference electrode to monitor pH values within a microfluidic reaction chamber. The monitored reaction chamber has an approximate volume of 90 nL. The pH value is controlled by adjusting the flow through two input channels using a pulse-width modulated signal applied to on-chip integrated valves. We demonstrate real-time control of pH through the feedback-controlled stepping of 0.14 pH increments in both the increasing and decreasing direction. The system converges to the pH setpoint within approximately 20 seconds of a step change. The integration of feedback theory into a microfluidic environment is a necessary step for achieving complete control over the microenvironment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.