Abstract

LiDAR sensors can produce point clouds with precise 3D depth information that is essential for autonomous vehicles and robotic systems. As a perception task, point cloud clustering algorithms can be applied to segment the points into object instances. In this brief, we propose a novel, hardware-friendly fast channel clustering (FCC) algorithm that achieves state-of-the-art performance when evaluated using KITTI panoptic segmentation benchmark. Furthermore, an efficient, pipeline hardware architecture is proposed to implement the FCC algorithm on an FPGA. Experiments show that the hardware design can process each LiDAR frame with 64 channels, 2048 horizontal resolution at various point sparsity in 1.93 ms, which is more than 471.5 times faster than running on the CPU. The code will be released to the public via GitHub.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.