Abstract

In recent years, facial expression recognition has played an important role in the field of human-computer interaction, and the application of deep learning technology has enabled it to develop more rapidly. In this paper, we create a lightweight network model for real-time emotion classification to recognize student facial expressions. The system includes: using Haar cascade for face detection, combined with the idea of Xception to propose a lightweight CNN network model, using pre-activation in the residual block to optimize the model and reduce the impact of overfitting. The experimental results on the FER2013 database show that our model has a better expression classification effect than other state-of-the-art methods. Besides, our model uses fewer parameters, which reduces the complexity of network training. When real-time emotional recognition of students, the system can help teachers adjust their teaching methods according to the emotional state of students.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.