Abstract

The COVID-19 pandemic disrupted people’s livelihoods and hindered global trade and transportation. During the COVID-19 pandemic, the World Health Organization mandated that masks be worn to protect against this deadly virus. Protecting one’s face with a mask has become the standard. Many public service providers will encourage clients to wear masks properly in the foreseeable future. On the other hand, monitoring the individuals while standing alone in one location is exhausting. This paper offers a solution based on deep learning for identifying masks worn over faces in public places to minimize the coronavirus community transmission. The main contribution of the proposed work is the development of a real-time system for determining whether the person on a webcam is wearing a mask or not. The ensemble method makes it easier to achieve high accuracy and makes considerable strides toward enhancing detection speed. In addition, the implementation of transfer learning on pretrained models and stringent testing on an objective dataset led to the development of a highly dependable and inexpensive solution. The findings provide validity to the application’s potential for use in real-world settings, contributing to the reduction in pandemic transmission. Compared to the existing methodologies, the proposed method delivers improved accuracy, specificity, precision, recall, and F-measure performance in three-class outputs. These metrics include accuracy, specificity, precision, and recall. An appropriate balance is kept between the number of necessary parameters and the time needed to conclude the various models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.