Abstract

A novel method of using hyperspectral imaging technique with the weighted combination of spectral data and image features by fuzzy neural network (FNN) was proposed for real-time prediction of polyphenol oxidase (PPO) activity in lychee pericarp. Lychee images were obtained by a hyperspectral reflectance imaging system operating in the range of 400–1000nm. A support vector machine-recursive feature elimination (SVM-RFE) algorithm was applied to eliminating variables with no or little information for the prediction from all bands, resulting in a reduced set of optimal wavelengths. Spectral information at the optimal wavelengths and image color features were then used respectively to develop calibration models for the prediction of PPO in pericarp during storage, and the results of two models were compared. In order to improve the prediction accuracy, a decision strategy was developed based on weighted combination of spectral data and image features, in which the weights were determined by FNN for a better estimation of PPO activity. The results showed that the combined decision model was the best among all of the calibration models, with high R2 values of 0.9117 and 0.9072 and low RMSEs of 0.45% and 0.459% for calibration and prediction, respectively. These results demonstrate that the proposed weighted combined decision method has great potential for improving model performance. The proposed technique could be used for a better prediction of other internal and external quality attributes of fruits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call