Abstract

Summary Hydrate formation and deposition are usually encountered during deepwater gas well testing, and if hydrates are not detected and managed in time, a plugging accident can easily occur. In this study, we demonstrate a method for estimating and managing the risk of hydrate plugging in real time during the testing process. The method includes the following steps: predicting the hydrate stability region, calculating the hydrate formation and deposition behaviors, analyzing the effect of the hydrate behaviors on variations in wellhead pressure, monitoring the variations in wellhead pressure and estimating the hydrate plugging risk in real time, and managing the risk in real time. An improved pressure-drop calculation model is established to calculate the pressure drop in annular flows with hydrate behaviors, and it considers the dynamic effect of hydrate behavior on fluid flow and surface roughness. The pressure drops calculated at different times agree well with experimental and field data. A case study is conducted to investigate the applicability of the proposed method, and results show that with the continued formation and deposition of hydrates, both the effective inner diameter of the tubing and the wellhead pressure decrease accordingly. When the wellhead pressure decreases to a critical safety value under a given gas production rate, a hydrate inhibitor must be injected into the tubing to reduce the severity of hydrate plugging. It is also necessary to conduct real-time monitoring of variations in wellhead pressure to guarantee that the risk of hydrate plugging is within a safe range. This method enables the real-time estimation and management of hydrate plugging during the testing process, and it can provide a basis for the safe and efficient testing of deepwater gas wells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call