Abstract

A method for sensitively monitoring enzyme kinetics and activities by using dual-color fluorescence cross-correlation spectroscopy is described. This universal method enables the development of highly sensitive and precise assays for real-time kinetic analyses of any catalyzed cleavage or addition reaction, where a chemical linkage is formed or cleaved through an enzyme's action between two fluorophores that can be discriminated spectrally. In this work, a homogeneous assay with restriction endonuclease EcoRI and a 66-bp double-stranded DNA containing the GAATTC recognition site and fluorophores at each 5' end is described. The enzyme activity can be quantified down to the low picomolar range (>1.6 pM) where the rate constants are linearly dependent on the enzyme concentrations over two orders of magnitude. Furthermore, the reactions were monitored on-line at various initial substrate concentrations in the nanomolar range, and the reaction rates were clearly represented by the Michaelis-Menten equation with a KM of 14 +/- 1 nM and a kcat of 4.6 +/- 0.2 min-1. In addition to kinetic studies and activity determinations, it is proposed that enzyme assays based on the dual-color fluorescence cross-correlation spectroscopy will be very useful for high-throughput screening and evolutionary biotechnology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.