Abstract
Energy management strategy (EMS), as a core technology in fuel cell vehicles (FCVs), profoundly influences the lifespan of fuel cells and the economy of the vehicle. Aiming at the problem of the EMS of FCVs based on a global optimization algorithm not being applicable in real-time, a rule extraction-based EMS is proposed for fuel cell commercial vehicles. Based on the results of the dynamic programming (DP) algorithm in the CLTC-C cycle, the deep learning approach is employed to extract output power rules for fuel cell, leading to the establishment of a rule library. Using this library, a real-time applicable rule-based EMS is designed. The simulated driving platform is built in a CARLA, SUMO, and MATLAB/Simulink joint simulation environment. Simulation results indicate that the proposed strategy yields savings ranging from 3.64% to 8.96% in total costs when compared to the state machine-based strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.