Abstract

In the future, the Internet of things (IoT) may provide huge volumes of data. Smart grids are a class of IoT electricity distribution systems that can control bidirectional energy flows between consumers and service providers (Barman et al. “IOT Based Smart Energy Meter for Efficient Energy Utilization in Smart Grid”, 978-1-5386-4769-1 1831.00, 2018 IEEE). A typical smart grid features an advanced metering infrastructure (AMI), which automatically collects meter data from widely distributed sensors. A utility company that intends to use AMI must deploy smart meters, data concentrator units, and a meter data management system (MDMS). Concentrators collect ubiquitous messages from smart meters and transmit aggregated data to their MDMS. Although ubiquitous messages may enhance the efficiency of some electricity grids, any excessive volume of messages causes data congestion. This research considers the Reference Energy Disaggregation Data Set. Our proposed algorithm can compress meter data efficiently. Our contributions are as follows: First, thus far, numerous researchers have attempted to address smart grid problems with AMI systems, and here, we provide a relatively complete review of these attempts. Second, this paper presents a strategy to analyze this problem and propose a compression algorithm to compress meter data. This proposed algorithm combines several existing compression algorithms and operates from 2 to 10% more efficiently than previously published algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.