Abstract

Recent studies show that emotion is a mechanism for fast decision-making in human and other animals. Mathematical models have been developed for describing emotion in mammals. These models, similar to other bioinspired models, must be implemented in embedded platforms for industrial and real applications. In this paper, brain emotional learning based intelligent controller, which is based on mammalian middle brain, is designed and implemented on field-programmable gate arrays, and this emotional controller is applied for controlling of laboratorial overhead traveling crane in model-free and embedded manner. The main features of this controller are leaning capability, providing a model-free control algorithm, robustness and the ability to respond swiftly. By designing appropriate stress signals, a designer can implement a proper trade among control objectives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.