Abstract

In vivo cell electroporation is the basis of DNA electrotransfer, an efficient method for non-viral gene therapy using naked DNA. The electric pulses have two roles, to permeabilize the target cell plasma membrane and to transport the DNA towards or across the permeabilized membrane by electrophoresis. For efficient electrotransfer, reversible undamaging target cell permeabilization is mandatory. We report the possibility to monitor in vivo cell electroporation during pulse delivery, and to adjust the electric field strength on real time, within a few microseconds after the beginning of the pulse, to ensure efficacy and safety of the procedure. A control algorithm was elaborated, implemented in a prototype device and tested in luciferase gene electrotransfer to mice muscles. Controlled pulses resulted in protection of the tissue and high levels of luciferase in gene transfer experiments where uncorrected excessive applied voltages lead to intense muscle damage and consecutive loss of luciferase gene expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.