Abstract

The purpose of this study was to observe the real-time interactions between trypsin and various inhibitors in articular cartilage in vitro using a novel electro-mechano-acoustic imaging method. Monitored in real-time, articular cartilage specimens from bovine patellae were first treated with trypsin to reach half proteoglycan depletion (Phase I), then the trypsin solution was replaced with (i) physiological saline buffer (PS), (ii) fetal bovine serum (FBS), (iii) protease inhibitor cocktail (PI) and (iv) 10% formalin (F), respectively, to observe their effects on residual digestion (Phase II). Ultrasound radio frequency signals from the articular cartilage were used to form a M-mode image, where the interface between trypsin digested and intact cartilage tissues could be observed with an additional echo generated. The inhibition time, the digestion depth and digestion fraction were measured for each specimen. The results showed that the dilution of trypsin using saline solution was not sufficient to stop the enzyme action instantly. Although groups FBS and PI had a similar inhibition time of approximately 1.5 h, their digestion depth was obviously different (0.25 ± 0.03 and 0.06 ± 0.06 mm, respectively). In contrast, formalin only took <30 min to stop the trypsin digestion with almost no further digestion. The results demonstrated that the current system was capable of monitoring the trypsin digestion and inhibition process in real time. Also, different chemicals affected the residual trypsin digestion to different degrees. (E-mail: ypzheng@ieee.org)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.