Abstract

Various approaches have been proposed for point-of-care diagnostics, and in particular, optical detection is preferred because it is relatively simple and fast. At the same time, field-effect transistor (FET)-based biosensors have attracted great attention because they can provide highly sensitive and label-free detection. In this work, we present highly sensitive, epidermal skin-type point-of-care devices with system-level integration of flexible MoS2 FET biosensors, read-out circuits, and light-emitting diode (LEDs) that enable real-time detection of prostate cancer antigens (PSA). Regardless of the physical forms or mechanical stress conditions, our proposed high-performance MoS2 biosensors can detect a PSA concentration of 1 pg·mL–1 without specific surface treatment for anti-PSA immobilization on the MoS2 surface on which we characterize and confirm physisorption of anti-PSA using Kelvin probe force microscopy (KPFM) and tapping-mode atomic force microscopy (tm-AFM). Furthermore, current modulation induced by the binding process was stably maintained for longer than 2–3 min. The results indicate that flexible MoS2-based FET biosensors have great potential for point-of-care diagnostics for prostate cancer as well as other biomarkers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.