Abstract

An dynamic system for real-time obstacle avoidance path planning of redundant robots is constructed in this paper. Firstly, the inter-frame difference method is used to identify the moving target and to calculate the target area, then on the basis of color features and gradient features extracted from the target area, the feature fusion Cam-Shift mean shift algorithm is used to track target, improving the robustness of the tracking algorithm. Secondly, a parallel two-channel target identification and location method based on binocular vision is proposed, updating the target's three-dimensional information in real time. Then, a dynamic collision-free path planning method is implemented: the safety rods are removed through the intersection test, and the minimum distance is derived directly by using the coordinate values of the target in the local coordinate system of the rod. On this basis, the obstacle avoidance gain and escape velocity related to the minimum distance is established, and obstacle avoidance path planning is implemented by using the zero space mapping matrix of redundant robot. Experiments are performed to study the efficiency of the proposed system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.