Abstract

Gesture recognition is a popular technology in the field of computer vision and an important technical mean of achieving human-computer interaction. To address problems such as the limited long-range feature extraction capability of existing dynamic gesture recognition networks based on convolutional operators, we propose a dynamic gesture recognition algorithm based on spatial pyramid pooling Transformer and optical flow information fusion. We take advantage of Transformer’s large receptive field to reduce model computation while improving the model’s ability to extract features at different scales by embedding spatial pyramid pooling. We use the optical flow algorithm with the global motion aggregation module to obtain an optical flow map of hand motion, and to extract the key frames based on the similarity minimization principle. We also design an adaptive feature fusion method to fuse the spatial and temporal features of the dual channels. Finally, we demonstrate the effectiveness of model components on model recognition enhancement through ablation experiments. We conduct training and validation on the SCUT-DHGA dynamic gesture dataset and on a dataset we collected, and we perform real-time dynamic gesture recognition tests using the trained model. The results show that our algorithm achieves high accuracy even while keeping the parameters balanced. It also achieves fast and accurate recognition of dynamic gestures in real-time tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call