Abstract

Nozzles are ubiquitous in agriculture: they are used to spray and apply nutrients and pesticides to crops. The properties of droplets sprayed from nozzles are vital factors that determine the effectiveness of the spray. Droplet size and other characteristics affect spray retention and drift, which indicates how much of the spray adheres to the crop and how much becomes chemical runoff that pollutes the environment. There is a critical need to measure these droplet properties to improve the performance of crop spraying systems. This paper establishes a deep learning methodology to detect droplets moving across a camera frame to measure their size. This framework is compatible with embedded systems that have limited onboard resources and can operate in real time. The method leverages a combination of techniques including resizing, normalization, pruning, detection head, unified feature map extraction via a feature pyramid network, non-maximum suppression, and optimization-based training. The approach is designed with the capability of detecting droplets of various sizes, shapes, and orientations. The experimental results demonstrate that the model designed in this study, coupled with the right combination of dataset and augmentation, achieved a 97% precision and 96.8% recall in droplet detection. The proposed methodology outperformed previous models, marking a significant advancement in droplet detection for precision agriculture applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.