Abstract

In this paper we introduce a novel algorithm for online distributed non-myopic task-selection in heterogeneous robotic teams. Our algorithm uses a temporal probabilistic representation that allows agents to evaluate their actions in the team’s joint action space while robots individually search their own action space. We use Monte-Carlo tree search to asymmetrically search through the robot’s individual action space while accounting for the probable future actions of their team members using the condensed temporal representation. This allows a distributed team of robots to non-myopically coordinate their actions in real-time. Our developed method can be applied across a wide range of tasks, robot team compositions, and reward functions. To evaluate our coordination method, we implemented it for a series of simulated and fielded hardware trials where we found that our coordination method is able to increase the cumulative team reward by a maximum of $$47.2\%$$ in the simulated trials versus a distributed auction-based coordination. We also performed several outdoor hardware trials with a team of three quadcopters that increased the maximum cumulative reward by $$24.5\%$$ versus a distributed auction-based coordination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.