Abstract

This paper addresses the issues of selfishness, limited network resources, and their adverse effects on real-time dissemination of Emergency Warning Messages (EWMs) in modern Autonomous Moving Platforms (AMPs) such as Vehicular Social Networks (VSNs). For this purpose, we propose a social intelligence based identification mechanism to differentiate between a selfish and a cooperative node in the network. Therefore, we devise a crowdsensing based mechanism to calculate a tie-strength value based on several social metrics. Moreover, we design a recursive evolutionary algorithm for each node’s reputation calculation and update. Given that, then we estimate each node’s state-transition probability to select a super-spreader for rapid dissemination. In order to ensure a seamless and reliable dissemination process, we incorporate 5G network structure instead of conventional short range communication which is used in most vehicular networks at present. Finally, we design a real-time dissemination algorithm for EWMs and evaluate its performance in terms of network parameters such as delivery-ratio, delay, hop-count, and message-overhead for varying values of vehicular density, speed, and selfish nodes’ density based on realistic vehicular mobility traces. In addition, we present a comparative analysis of the performance of the proposed scheme with state-of-the-art dissemination schemes in VSNs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call