Abstract

A real-time observation of neurotransmitter release from a nerve cell is a useful method for not only neuroscience research, but also assessing of the influence of chemicals, including drugs, on the human nervous system. In this study, a more simple and sensitive method for real-time monitoring of dopamine release from a nerve model cell was developed. Highly sensitive detection of dopamine was performed by using tyramine oxidase for dopamine oxidation, which was followed by a luminol luminescence reaction. This enzyme-catalyzed luminescence method was applied to observe dopamine release from the PC12 cell as a nerve model cell upon stimulation with acetylcholine and an acetylcholine receptor agonist. The results demonstrated that the real-time monitoring of the activation of the PC12 cell was easily performed by this method. This method possessed many advantages, such as high sensitivity, rapid measurement and no pretreatment for cells. It might be applied to drug screening and the assessment of harmful influences of food additives and pesticides on the nerves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.