Abstract

In this Brief Report, we present a method for the real-time detection of the bases of the deoxyribonucleic acid using their signatures in negative differential conductance measurements. The present methods of electronic detection of deoxyribonucleic acid bases are based on a statistical analysis because the electrical currents of the four bases are weak and do not differ significantly from one base to another. In contrast, we analyze a device that combines the accumulated knowledge in nanopore and scanning tunneling detection and which is able to provide very distinctive electronic signatures for the four bases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.