Abstract
Successful periodontal therapy requires sensitive techniques to discriminate dental calculus from healthy teeth. The aim of the present study was to develop a fluorescence-based procedure to enable real-time detection and quantification of dental calculus. Thirty human teeth – 15 teeth with sub- and supragingival calculus and 15 healthy teeth – covered with a layer of physiological saline solution or blood were illuminated by a focused blue LED light source of 405 nm. Autofluorescence spectra recorded along a randomly selected line stretching over the crown-neck-root area of each tooth were utilized to evaluate a so called calculus parameter R, which was selected to define a relationship between the integrated intensities specific for healthy teeth and for calculus in the 477–497 nm ( S A) and 628–685 nm ( S B) wavelength regions, respectively. Statistical analysis was performed and a cut-off threshold of R = 0.2 was found to distinguish dental calculus from healthy teeth with 100% sensitivity and specificity under various experimental conditions. The results of the spectral evaluation were confirmed by clinical and histological findings. Automated real-time detection and diagnostics for clinical use were implemented by a corresponding software program written in Visual Basic language. The method enables cost-effective and reliable calculus detection, and can be further developed for imaging applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Photochemistry & Photobiology, B: Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.