Abstract

BackgroundLocal antibiotic application has been widely used in orthopedic surgery. The dose-related toxicity of antibiotics towards periosteal tissues and resulting effects on osteogenic expression are yet to be studied.MethodsPeriosteal cells harvested from the medial tibia of New Zealand White rabbits were used. A seeding density of 5 × 103 cells/cm2 was determined to be optimal for testing in the pilot study; the cells were cultured in xCELLigence 96-well plates. Microfluidic impedance analyzers were used to monitor cellular proliferation in microfluidic culture systems with exposure to three different concentrations (10 μg/mL, 100 μg/mL, and 1000 μg/mL) of cefazolin, ciprofloxacin, and vancomycin, respectively. The correlation of cell index at day 7 with optical density values from WST-1 assays using conventional cultures was evaluated by calculating the Pearson’s coefficient. RNA analysis was performed to investigate the expression of osteogenic markers in the cultured cells, including core-binding factor alpha 1 (Cbfa1), osteopontin (OPN), and osteopontin promoter (OPNp), relative to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as the endogenous control.ResultsA significant dose-related inhibition of cell index was found for all the 3 antibiotics, whereas the WST-1 assays showed a significant dose-related inhibition of cellular proliferation only at a high dose of cefazolin (1000 μg/mL) and medium-to-high dose of ciprofloxacin (100 μg/mL and 1000 μg/mL). Pearson’s coefficient analysis indicated a high correlation between the cell index and optical density values of WST-1 assays only for medium and high doses of ciprofloxacin (100 μg/mL and 1000 μg/mL); a moderate correlation was seen for cefazolin, and a low dose of ciprofloxacin (10 μg/mL). RNA analysis confirmed significant dose-related inhibition of cfba1, OPN, and OPNp expression by all three antibiotics.ConclusionWith optimal seeding amounts, rabbit periosteal cells can be dynamically monitored in the xCELLigence microfluidic system. Dose-related inhibition of cellular proliferation and osteogenic expression was found after exposure to cefazolin and ciprofloxacin. By providing real-time detection and exhibiting comparable correlation, microfluidic impedance-based analyzer is a feasible alternative to the conventional WST-1 assays.

Highlights

  • Local antibiotic application has been widely used in orthopedic surgery

  • A commercial microfluidic cell analyzer called the xCELLigence system performs an impedance-based analysis, allowing the label-free dynamic monitoring of relatively viable and adherent cell amounts [6] and has been applied for the real-time detection of cell migration and proliferation in cancer immunotherapy [7], cytotoxicity [8], and drug resistance research [9]. This technology has been exploited to investigate the cellular profiles of osteoprogenitors derived from human jaw periosteum; it has shown potential to be used for engineering applications in maxillofacial orthopedic surgery [10]

  • Quantitative real-time polymerase chain reaction (PCR) assay With completion of the ultimate impedance measurement, ribonucleic acid (RNA) was isolated from the cell culture in the xCELLigence 96-well plates using the TRIzol reagent (Invitrogen, Carlsbad CA) as we described in previous publication [11]

Read more

Summary

Introduction

Local antibiotic application has been widely used in orthopedic surgery. The dose-related toxicity of antibiotics towards periosteal tissues and resulting effects on osteogenic expression are yet to be studied. A commercial microfluidic cell analyzer called the xCELLigence system (xCELLigence, Roche/ACEA Biosciences, CA) performs an impedance-based analysis, allowing the label-free dynamic monitoring of relatively viable and adherent cell amounts [6] and has been applied for the real-time detection of cell migration and proliferation in cancer immunotherapy [7], cytotoxicity [8], and drug resistance research [9] This technology has been exploited to investigate the cellular profiles of osteoprogenitors derived from human jaw periosteum; it has shown potential to be used for engineering applications in maxillofacial orthopedic surgery [10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call