Abstract

Rice husk, an agricultural waste that currently finds few uses, is rich in cellulose-based materials and silica. In this work, a simple one-pot method for preparing carbon dots and mesoporous silica from rice husk was developed, using hydrothermal and calcination methods. The carbon dots exhibited blue emission with excellent photostability, and had a diameter of 4–5 nm and a quantum yield of 3%. They were demonstrated to be capable of detecting alcohol vapors at room temperature, and of distinguishing between methanol, ethanol, and several volatile organic compounds when used as the sensing layer in an optical electronic nose system. The alcohol content of a commercial beverage was successfully determined using the carbon dot-integrated electronic nose. The solvation effect of the alcohol vapors on the electronic absorption spectra of model carbon dot structures was illustrated using time-dependent density functional theory with the dielectric polarizable continuum model. The UV–vis and computational results confirmed that the sensing mechanism of carbon dots is through the modulation of their optical absorbance governed by polar-polar interfacial interactions. This was experimental and computational demonstration of carbon dot sensing of vapors. Their excellent biocompatibility suggests biomedical applications, in addition to sensing. The production of two functional materials from a single low-value waste source was demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call