Abstract
This article explores techniques for the detection and classification of fish as an integral part of underwater environmental monitoring systems. Employing an innovative approach, the study focuses on developing real-time methods for high-precision fish detection and classification. The implementation of cutting-edge technologies, such as YOLO (You Only Look Once) V5, forms the basis for an efficient and responsive system. The study also evaluates various approaches in the context of deep learning to compare the performance and accuracy of fish detection and classification. The results of this research are expected to contribute to the development of more advanced and effective aquatic monitoring systems for understanding underwater ecosystems and conservation efforts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.