Abstract
Obtaining the exact position of accumulated calcium on the inner walls of coronary arteries is critical for successful angioplasty procedures. For the first time to our knowledge, in this work, we present a high accuracy imaging of the inner coronary artery using microwaves for precise calcium identification. Specifically, a cylindrical catheter radiating microwave signals is designed. The catheter has multiple dipole-like antennas placed around it to enable a 360° field-of-view around the catheter. In addition, to resolve image ambiguity, a metallic rod is inserted along the axis of the plastic catheter. The reconstructed images using data obtained from simulations show successful detection and 3D localization of the accumulated calcium on the inner walls of the coronary artery in the presence of blood flow. Considering the space and shape limitations, and the highly lossy biological tissue environment, the presented imaging approach is promising and offers a potential solution for accurate localization of coronary atherosclerosis during angioplasty or other related procedures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.