Abstract

Visual input can be used to recover the 3-D structure of a scene by estimating distances (depth) to the observer. Depth estimation is performed in various applications, such as robotics, autonomous driving, or surveillance. We present a low-power, compact, passive, and static imaging system that computes a semi-dense depth map in real time for a wide range of depths. This is achieved by using a focus-tunable liquid lens to sweep the optical power of the system at a high frequency, computing depth from focus on a mixed-signal programmable focal-plane processor. The use of local and highly parallel process- ing directly on the focal plane removes the sensor-processor bandwidth limitations typical in conventional imaging and processor technologies and allows real-time performance to be achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.