Abstract

The current methods used to study photocatalysis-assisted water disinfection at a laboratory scale may not lead to process scale-up for large-scale implementation. These methods do not capture the process complexity and address all the factors underlying disinfection kinetics, including the physical characteristics (e.g., shape and size) of the photocatalyst, the light intensity, the form of the catalyst (e.g., free-floating and immobilized), and the photocatalyst-microorganism interaction mode (e.g., collision mode and constant contact mode). This drawback can be overcome using in situ methods to track the interaction between the photocatalysts and the microorganisms (e.g., Escherichia coli) and thereby engineering the resulting disinfection kinetics. Contextually, this study employed microscopy and particle-tracking algorithms to quantify in situ cell motility of E. coli undergoing titanium dioxide (TiO2) nanowire-assisted photocatalysis, which was observed to correlate with cell viability closely. This experimentation also informed that the E. coli bacterium interacted with the photocatalysts through collisions (without sustained contact), which allowed for phenomenological modeling of the observed first-order kinetics of E. coli inactivation. Addition of fluorescent-tagging assays to microscopy revealed that cell membrane integrity loss is the primary mode of bacterial inactivation. This methodology is independent of the microorganism or the photocatalyst type and hence is expected to be beneficial for engineering disinfection kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.