Abstract

An unmanned automated job shop manufacturing system with a single multi-load automated guided vehicle, which traverses around a single-loop guidepath, is considered in this work. This type of shop design is often used as an independent sector of some complex AGV layouts, such as tandem, segmented bi-directional single-loop and divided configurations. The type of multi-load vehicle is a good alternative against using more single-load vehicles to serve a higher transportation demand. To an unmanned automated manufacturing system, the management of finite system resources, e.g. finite input/output queuing space and transporting carriers, plays a vital role in avoiding system deadlocks and machine blockages. The proposed control strategy for a single multi-load vehicle uses global shop real-time information to achieve the objectives: avoid shop deadlocks caused by inappropriate job movement as well as satisfy the system transport requirement. The efficiency of the proposed vehicle control strategy and the other two expanded strategies under various parameter designs are verified by computer simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.