Abstract
In this study, we examined how students' levels of spatial visualization ability interact with learning physics in a microcomputer-based laboratory (MBL) environment. Undergraduate students who had taken an introductory physics course based on MBL tools were pre- and posttested at the beginning and at the end of the semester on spatial visualization ability and their conceptual understanding of mechanics. The results showed that while spatial visualization is a reliable predictor for students' performance on physics conceptual evaluation tests before MBL instruction, the relation is not significant after the instruction. Furthermore, as a result of MBL instruction, students' levels of spatial visualization increased significantly. In addition, a group of science teachers presented with different types of MBL activities also showed a significant increase in spatial visualization ability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.