Abstract

X-ray photoemission spectra generally exhibit satellite features beyond the main peak due to many-body excitations. However, the satellites associated with charge-transfer excitations in correlated materials have proved difficult to calculate from first principles and their interpretation has been controversial. Here we show that these satellites can be attributed to local density fluctuations in response to a suddenly created core hole. Our approach is based on a cumulant representation of the core-hole Green's function with a real-time, time-dependent density functional theory calculation of the cumulant. This approach includes effects that cannot be accounted for by cluster methods and yields a direct real-space, real-time interpretation. Illustrative results for ${\mathrm{TiO}}_{2}$ and NiO are in good agreement with XPS experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.