Abstract

As the automobile market gradually develops towards intelligence, networking, and information-orientated, intelligent identification based on connected vehicle data becomes a key technology. Specifically, real-time crash identification using vehicle operation data can enable automotive companies to obtain timely information on the safety of user vehicle usage so that timely customer service and roadside rescue can be provided. In this paper, an accurate vehicle crash identification algorithm is developed based on machine learning techniques using electric vehicles’ operation data provided by SAIC-GM-Wuling. The point of battery disconnection is identified as a potential crash event. Data before and after the battery disconnection is retrieved for feature extraction. Two different feature extraction methods are used: one directly extracts the descriptive statistical features of various variables, and the other directly unfolds the multivariate time series data. The AdaBoost algorithm is used to classify whether a potential crash event is a real crash using the constructed features. Models trained with the two different features are fused for the final outputs. The results show that the final model is simple, effective, and has a fast inference speed. The model has an F1 score of 0.98 on testing data for crash classification, and the identified crash times are all within 10 s around the true crash times. All data and code are available at https://github.com/MeixinZhu/vehicle-crash-identification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.