Abstract
We use dimensional reduction techniques to relate real time finite T correlation functions in (2+1) dimensional QCD to bound state parameters in a generalized 't Hooft model with an infinite number of heavy quark and adjoint scalar fields. While static susceptibilities and correlation functions of the DeTar type can be calculated using only the light (static) gluonic modes, the dynamical correlators require the inclusion of the heavy modes. In particular we demonstrate that the leading T perturbative result can be understood in terms of the bound states of the 2d model and that consistency requires bound state trajectories composed of both quarks and adjoint scalars. We also propose a non-perturbative expression for the dynamical DeTar correlators at small spatial momenta.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.