Abstract

This work aims to determine whether photoacoustic (PA) thermometry from a commercially available PA imaging system can be used to control the temperature in nanoparticle-mediated thermal therapies. The PA imaging system was interfaced to obtain PA images while scanning ex-vivo tissue. These images were then used to obtain temperature maps in real-time during heating. Validation and calibration of the PA thermometry were done using a fluoroptic thermometer. This thermometer was also used to develop and tune a software-based proportional integral derivative (PID) controller. Finally, a PA-based PID closed-loop controller was used to control gold nanorod (GNR) mediated laser therapy. The use of GNRs substantially enhanced laser heating; the temperature rise increased 7-fold by injecting a GNR solution with a concentration of 0.029 mg/mL. The control experiments showed that the desired temperature could be achieved and maintained at a targeted location in the ex-vivo tissue. The steady-state mean absolute deviations (MAD) from the targeted temperature during control were between 0.16 [Formula: see text] and 0.5 [Formula: see text], depending on the experiment. It was possible to control hyperthermia treatments using a software-based PID controller and a commercial PA imaging system. The monitoring and control of the temperature in thermal-based therapies are important for assuring a prescribed temperature to the target tissue while minimizing the temperature of the surrounding healthy tissue. This easily implemented non-invasive control system will facilitate the realization of a broad range of hyperthermia treatments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.