Abstract

During the cold-start process of a PEMFC, the supply of air and hydrogen in the gas supply system has a great influence on the cold-start performance. The cold-start of a PEMFC is a complex nonlinear coupling process, and the traditional control strategy is not sensitive to the real-time characteristics of the system. Inspired by the strong perception and decision-making abilities of deep reinforcement learning, this paper proposes a cold-start control strategy for a gas supply system based on the MADDPG algorithm, and designs an air supply controller and a hydrogen supply controller based on this algorithm. The proposed strategy can optimize the control parameters of the gas supply system in real time according to the temperature rise rate of the stack during the cold-start process, the fluctuation of the OER, and the voltage output characteristics. After the strategy is trained offline according to the designed reward function, the detailed in-loop simulation experiment results are given and compared with the traditional control strategy for the gas supply system. From the results, it can be seen that the proposed MADDPG control strategy has a more effective coordination control effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call