Abstract

Control system is very important for each autonomous surface vehicle (ASV), which involves the problem of maintaining the vehicle’s position and heading using feedback controller and achieving the desired forces through thrust allocation. In this paper, we present a practical thrust allocator for under-actuated and fully-actuated vehicles, which can be represented as a quadratic programming (QP) problem with linear constraints. Such an optimization method allows us to consider common propulsion system, including tunnel thruster, azimuth thruster, and fixed propeller with rudder. These linear constraints enable us to explicitly account for the rate, amplitude and azimuth constraints of each propeller on the vessel. The proposed methods have been illustrated by simulated and experimental maneuvers for different thruster layout of a vehicle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.