Abstract

In order to study anesthetic pharmacokinetics and adequately adjust the anaesthesia depth of patients, real-time measurement of the intraoperative exhaled propofol concentration is of significant importance for anaesthetists. Although a series of analytical techniques and methods have been developed for the detection of exhaled propofol, differential mobility spectrometry (DMS) with the advantages of a much smaller instrument, faster response time and cheaper cost shows great potential for the point of care in the operating room. In this paper, a planar DMS was constructed for real-time continuous measurement of trace propofol in exhaled air. The effects of DMS parameters, such as the radio frequency voltage, the drift gas flow rate and the sampling flow rate of exhaled air on the propofol measurement under high humidity conditions were carefully investigated and discussed. Under the optimum experimental conditions, the limit of detection (LOD) for propofol was achieved in ppbv with a linear range of 0.5 to 25 ppbv, both of which meet clinical requirements. Finally, the planar DMS was performed on a patient undergoing thyroidectomy surgery to real-time monitor the intraoperative exhaled propofol, which demonstrated the capability of DMS for sensitive and breath-by-breath continuous measurement of intraoperative trace exhaled propofol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.