Abstract

This paper presents a simple and robust approach to achieving collision avoidance for kinematically redundant manipulators at the control-loop level. The proposed scheme represents the obstacle avoidance requirement as inequality constraints in the manipulator workspace, and ensures that these inequalities are satisfied while the end-effector tracks the desired trajectory. The control scheme is the damped-least-squares formulation of the configuration control approach implemented as a kinematic controller. Computer simulation and experimental results are given for a Robotics Research 7 DOF redundant arm and demonstrate the collision avoidance capability for reaching inside a truss structure. These results confirm that the proposed approach provides a simple and effective method for real-time collision avoidance. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call