Abstract

Real-time, simultaneous, and adaptive beam steering into multiple regions of interest replaces conventional raster scanning with a less time-consuming and flexible beam steering framework, where only regions of interest are scanned by a laser beam. CUDA-OpenGL interoperability with a computationally time-efficient computer-generated hologram (CGH) calculation algorithm enables such beam steering by employing a MEMS-based phase light modulator (PLM) and a Texas Instruments Phase Light Modulator (TI-PLM). The real-time CGH generation and display algorithm is incorporated into the beam steering system with variable power and scan resolution, which are adaptively controlled by camera-based object recognition. With a mid-range laptop GPU and the current version of the MEMS-PLM, the demonstrated scanning speed can exceed 1000 points/s (number of beams > 5) and potentially exceeds 4000 points/s with state-of-the-art GPUs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call